Lawrence Webster Forrest (LWF), Fire Engineering and Fire Risk Management Consultants
Lawrence Webster Forrest (LWF), Fire Engineering and Fire Risk Management Consultants



Navigation

Client login
Forgotten password
Follow us on Twitter Follow us on Facebook Subscribe to our blog

Lawrence Webster Forrest
Legion House
Lower Road
Kenley
Surrey
CR8 5NH

Tel: +44 (0)20 8668 8663 Fax: +44 (0)20 8668 8583
E-mail: fire@lwf.co.uk

Fire Safety for Healthcare Premises - Cavity Barriers and Sprinklers - Part 43

Posted by LWF: 11/10/2018 11:45

In LWF’s blog series for healthcare professionals, the aim is to give information on best practice of fire safety in hospitals and other healthcare premises. In part 42 of this series, we looked at how cavity barriers should be installed in uninterrupted concealed spaces or cavities and also some exceptions to the rules. In part 43, we will continue looking at the use of cavity barriers in healthcare buildings.

There are some instances where cavity barriers should not be installed. For instance, in cavity walls, in double-skinned insulated roof sheeting or below a floor next to the ground or oversite concrete (providing the cavity is less than 1000 mm in height or is not accessible by persons and there are no openings in the floor where it would be possible for combustibles to accumulate).

It should be noted that combustible materials are not permitted to be placed within or exposed to the cavity, with certain exceptions:

- Timber lintels, window or door frames, or the ends of timber joists
- Pipes, conduits or cables
- DPC, flashing cavity closer or wall tie
- Thermal insulating materials (two leaves of brick block or concrete each at least 75 mm thick, 100 mm maximum cavity width.

While openings in barriers should be avoided, there are some exceptions, such as doors which have 30-minutes fire-resistance, pipes, cables, conduits, openings fitted with a suitably mounted automatic fire and smoke damper or ducts (which, unless they are fire-resisting and fitted with a suitably mounted automatic fire damper where they pass through the cavity barrier).

Other situations where cavity barriers should not be used might include those not based on structural limitations. One example is that of an operating department where the complex ventilation ductwork systems mean that cavity barriers would seriously compromise service access and therefore, safe access and egress for maintenance staff. 

Operating departments are restricted access and very well supervised once in use, along with all hazard areas being enclosed in fire-resistant construction. The risks due to not having a cavity barrier are therefore lower than in other areas of a healthcare building.

In part 44 of this series, LWF will introduce the subject of sprinkler systems in healthcare buildings and look at how the design team might approach their use or justify the lack thereof. In the meantime, if you have any questions about this blog, or wish to discuss your own project with one of our fire engineers, please contact us.

Lawrence Webster Forrest has been working with their clients for over 25 years to produce innovative and exciting building projects. If you would like further information on how LWF and fire strategies could assist you, please contact Peter Gyere on 020 8668 8663.

While care has been taken to ensure that information contained in LWF's publications is true and correct at the time of publication, changes in circumstances after the time of publication may impact on the accuracy of this information.

Leave a reply

  *

  *

 


CAPTCHA Image

[ Change the image ]


*Required

Subscribe to our fire safety blogs

Bulletins
Email Format
* indicates required

FIRE SAFETY BLOGS

  • Fire Engineering Design and Risk Assessment - Firefighting & The Fire Service - Part 18

    In LWF's Fire Engineering blog series for Architects and others involved in building design, we have been looking at firefighting. In part 17, we began to look at how firefighting is undertaken by the Fire Service and their objectives and modes of operation when arriving at a fire. In part 19, tactical firefighting is discussed.While the general objectives of tactical firefighting were given in the last blog, there are various methods used by firefighters...

    Read more...

  • Fire Safety for Healthcare Premises - Open-sided Car Parks - Part 52

    In LWFs blog series for healthcare professionals, the aim is to give information on best practice of fire safety in hospitals and other healthcare premises. In part 51 of this series, we were looking at the potential for fire spread from one area of a building to another through external surfaces, before moving on to begin to look at the necessary arrangements for car parks. In part 52, we continue on that theme by considering...

    Read more...

  • Facilities Management & Fire Safety - Calculating RSET - Part 9

    In LWFs blog series for those who work in Facilities Management or who have an interest in or responsibility for fire safety we have been looking at fire safety engineering. In part 8, we looked at how ASET (Available Safe Egress Time) is calculated and how this should always be more than the RSET (Required Safe Egress Time). While ASET involves a series of calculations relating to fire growth and the building itself, RSET, also...

    Read more...

  • Fire Engineering Design and Risk Assessment - Firefighting & The Fire Service - Part 17

    In LWF’s fire engineering blog series for Architects and others in the business of building design, we have been looking at firefighting. In part 16, we discussed first-aid firefighting by the occupancy and the use of hose reels to do so. In part 17, we will begin to look at firefighting from the point of view of the Fire Services.The particular objectives of the Fire Service in a given situation will be decided upon...

    Read more...

  • Fire Safety for Healthcare Premises - External Fire Spread - Part 51

    In LWF’s blog series for healthcare professionals, the aim is to give information on best practice of fire safety in hospitals and other healthcare premises. In part 50 of this series, we discussed the potential for external fire spread including calculating unprotected areas and consideration of the surfaces of external walls and roofs. In part 51, we continue looking at external fire spread, starting with junctions of different elements.At the junction of wall and...

    Read more...

Case Studies

The Wohl Neuroscience Institute - Fire Safety, Strategy & Engineering
Key Facts: Client: King’s Clinical Neuroscience Institute Project Manager: MACE Ltd Designers: Devereux Architects/Allies and Morrison Approximate Size: 7,400m2 Description of the Project:...

Read more..

General Bulletins

Fire - The External Risk
When we consider fire safety, our focus is normally from within, what can we do to prevent the occurrence of fire and how we can limit its damage.  Whilst this is the correct stance to take, we m...

Read more..

Technical Bulletins

Evacuation Modelling - Factor in Human Behaviour
Evacuation of buildings can be analyzed in different ways. Approved Document B (ADB) which provides guidance on meeting the requirements of the England and Wales Building Regulations with regard to fi...

Read more..

Site map | Web development London