Lawrence Webster Forrest (LWF), Fire Engineering and Fire Risk Management Consultants
Lawrence Webster Forrest (LWF), Fire Engineering and Fire Risk Management Consultants



Navigation

Client login
Forgotten password
Follow us on Twitter Follow us on Facebook Subscribe to our blog

Lawrence Webster Forrest
Legion House
Lower Road
Kenley
Surrey
CR8 5NH

Tel: +44 (0)20 8668 8663 Fax: +44 (0)20 8668 8583
E-mail: fire@lwf.co.uk

Fire Engineering Design and Risk Assessment - Types of Foam System - Part 5

Posted by LWF: 30/05/2018 12:03

In LWF’s Fire Engineering blog series for architects and others in the building design business, we have been looking at Fire Suppression systems. In part 4, the different methods of foam proportioning were outlined and in part 5, we will discuss types of foam system.

Low expansion foam is a solution which is aspirated in ratios between 1:1 and 20:1. The ratio indicates the volume of foam required in comparison to the foam solution produced, once aspirated. So, a solution with a ratio of 10:1 indicates that 1m3 of 'raw' foam would produce 10m3 of finished foam solution.

It is used for the protection of flammable liquid storage tanks in cone and floating roof situations, bays for the loading and off-loading of tankers, areas for aircraft landing and servicing, spaces where oil-fuelled machinery is operated and process areas. They can also be used to protect bunds and dikes, which are a brick-built form of secondary containment around storage areas of flammable liquids.

The foam and water mixture is aspirated by a compressed air foam system before it is discharged via the nozzles.

Medium expansion foams are those solutions which are aspirated in ratios between 20:1 and 200:1, although it is most common to utilise a mixture of around 50:1. While a medium expansion foam system can be used to protect dike and bunds, as above, they can also be used for manual firefighting for flammable liquid spills of a minor nature. 

It has proved effective at limiting the effects of flammable or toxic vapours rising from spills which helps to protect any persons in the surrounding area from the fumes and to prevent ignition of the flammable vapours.

High expansion foam is aspirated between 200:1 and 1000:1. It is commonly used for outdoor spills of liquefied natural gas at a ratio of 500:1. 

High expansion foam can be used to protect warehouses, tunnel and aircraft hangars, as well as cable voids where water damage could be an issue or water may not be available.

While high expansion foam is extremely effective, it must fill the hazard area to above the height of the highest hazard. This can cause problems with people in the area breathing, hearing or having an accurate sense of direction. Firefighters can also experience problems in finding the source of the fire. 

In part 6 of this series, LWF will look at Foam System Discharge Devices and give a brief overview of how they work. In the meantime, if you have any questions about this blog, or wish to discuss your own project with one of our fire engineers, please contact us.

Lawrence Webster Forrest has been working with their clients for over 25 years to produce innovative and exciting building projects. If you would like further information on how LWF and fire strategies could assist you, please contact Peter Gyere on 020 8668 8663.

While care has been taken to ensure that information contained in LWF's publications is true and correct at the time of publication, changes in circumstances after the time of publication may impact on the accuracy of this information.

Leave a reply

  *

  *

 


CAPTCHA Image

[ Change the image ]


*Required

Subscribe to our fire safety blogs

Bulletins
Email Format
* indicates required

FIRE SAFETY BLOGS

  • Fire Engineering Design and Risk Assessment - Compartmentation & Fire Severity - Part 10

    In LWF’s Fire Engineering blog series for Architects and others in the building design industry, we have been looking at the use of compartmentation to avoid the spread of fire. In part 9, the use of compartments with sprinkler systems was discussed and in part 10, we look at the potential severity of fires in enclosed spaces.The severity of a fire in an enclosed space is dependent upon factors such as heat leaving the...

    Read more...

  • Fire Safety for Healthcare Premises - Sprinklers - Part 44

    In LWF’s blog series for healthcare professionals, the aim is to give information on best practice of fire safety in hospitals and other healthcare premises. In part 43 of this series, we discussed cavity barriers and those areas where they are not practical for use, for fire safety reasons. In part 44, we move on to discuss the use of sprinklers in healthcare buildings. Sprinklers are not a requirement for patient areas of healthcare buildings...

    Read more...

  • Facilities Management & Fire Safety - Fire Safety Engineering - Part 1

    In LWF’s blog series for those who work in Facilities Management or who have an interest in or responsibility for fire safety, we were looking at fire safety training. In Part 1 of this series, however, we begin to review the subject of fire safety engineering. While most people reading on this subject could work out what fire safety engineering is, from the title, LWF will start by looking at the history of fire safety...

    Read more...

  • Fire Engineering Design and Risk Assessment - Compartmentation & Sprinklers - Part 9

    In LWF’s fire engineering blog series for Architects and others in the building design business, we have been looking at compartmentation and how can be used both in prescriptive and fire engineered solutions. In part 8 of this series, the provision of a fire safety strategy for a building was discussed and in part 9, we move onto how compartmentation and sprinklers work together.The effectiveness of sprinkler systems at controlling fires has had a...

    Read more...

  • Fire Safety for Healthcare Premises - Cavity Barriers and Sprinklers - Part 43

    In LWF’s blog series for healthcare professionals, the aim is to give information on best practice of fire safety in hospitals and other healthcare premises. In part 42 of this series, we looked at how cavity barriers should be installed in uninterrupted concealed spaces or cavities and also some exceptions to the rules. In part 43, we will continue looking at the use of cavity barriers in healthcare buildings.There are some instances where cavity...

    Read more...

Case Studies

The Wohl Neuroscience Institute - Fire Safety, Strategy & Engineering
Key Facts: Client: King’s Clinical Neuroscience Institute Project Manager: MACE Ltd Designers: Devereux Architects/Allies and Morrison Approximate Size: 7,400m2 Description of the Project:...

Read more..

General Bulletins

Fire - The External Risk
When we consider fire safety, our focus is normally from within, what can we do to prevent the occurrence of fire and how we can limit its damage.  Whilst this is the correct stance to take, we m...

Read more..

Technical Bulletins

Evacuation Modelling - Factor in Human Behaviour
Evacuation of buildings can be analyzed in different ways. Approved Document B (ADB) which provides guidance on meeting the requirements of the England and Wales Building Regulations with regard to fi...

Read more..

Site map | Web development London