Lawrence Webster Forrest (LWF), Fire Engineering and Fire Risk Management Consultants
Lawrence Webster Forrest (LWF), Fire Engineering and Fire Risk Management Consultants



Navigation

Client login
Forgotten password
Follow us on Twitter Follow us on Facebook Subscribe to our blog

Lawrence Webster Forrest
Legion House
Lower Road
Kenley
Surrey
CR8 5NH

Tel: +44 (0)20 8668 8663 Fax: +44 (0)20 8668 8583
E-mail: fire@lwf.co.uk

Fire Engineering Design and Risk Assessment - Sprinkler Installation Design - Part 32

Posted by LWF: 08/02/2018 13:24

In LWF’s Fire Engineering blog series for Architects and others in the building design business, we have been looking at sprinkler installations and how to approach them. Part 31 went through the basics of the spacing and location of sprinklers in terms of maximum allowable spacing. In Part 32, the location of sprinklers in terms of placement, height and purpose will be explored.

Sprinklers should be placed where there are no obstructions to interrupt the flow. They should be sited close to the ceiling at the height they would be most effective. BS 9999:2017 covers the inclusion of an atrium in a building and recommends sprinkler heights depending upon the response time of the head, based on the control of a design fire of 2.5MW. 

Atriums cause their own challenges as the inclusion of sprinklers at ceiling level would probably involve heights too great for the sprinkler to affect a fire at ground level. With this in mind, sprinklers placed on the edges of adjacent floors should be sited and designed with consideration given to how they will ensure fire does not spread from the atrium to the protected floor.

The use of sprinklers to prolong the ability of glass to withstand heat from a fire has been well documented. Most commonly, such methods are used on the exterior of a building and are known as external drencher systems. However, although it is not covered by relevant codes, there is no reason why this principle could not be extended to include interior windows. Each situation should be considered individually but as a guide, a sprinkler which was placed within 600mm of glazing should provide a good spray distribution over the area. 

Various systems have been used for atrium areas designs and are not covered by design codes so far. Each system should be designed to suit the individual circumstances and fire safety aims, while also satisfying the requirements of the relevant authorities. 

Where sloping roofs or soffits are in use, hot gases from a fire would collect at the uppermost point. In such circumstances, the sprinklers should be located reasonably close to the ridge where the angle is 1 in 3 or steeper. The positioning of the sprinklers is important as it affects the speed of operation. In order to ensure the fastest possible operation, the sprinkler should be located between 75mm and 150mm below the soffit, so that they are placed where the hottest gases will be.

In part 33 of this series, LWF will continue discussing sprinkler system installations and will talk about suspended ceilings and pipework systems. In the meantime, if you have any questions about this blog, or wish to discuss your own project with one of our fire engineers, please contact us.

Lawrence Webster Forrest has been working with their clients for over 25 years to produce innovative and exciting building projects. If you would like further information on how LWF and fire strategies could assist you, please contact Peter Gyere on 020 8668 8663.

While care has been taken to ensure that information contained in LWF's publications is true and correct at the time of publication, changes in circumstances after the time of publication may impact on the accuracy of this information.


Leave a reply

  *

  *

 


CAPTCHA Image

[ Change the image ]


*Required

Subscribe to our fire safety blogs

Bulletins
Email Format
* indicates required

FIRE SAFETY BLOGS

  • Fire Engineering Design and Risk Assessment - Compartmentation - Part 1

    In LWF’s blog series for architects and others in the building design business, we talk about fire engineered and prescriptive solutions for use in England and Wales. In part 1 of this series, we discuss compartmentation of buildings for fire safety purposes.Without effective compartmentation, fire would simply be able to move through a building using the structure as fuel to grow very quickly. Compartmentation is the sub-dividing of a building using fire resisting walls...

    Read more...

  • Fire Safety for Healthcare Premises - Compartmentation - Part 35

    In LWF’s blog series for healthcare professionals, the aim is to give information on best practice of fire safety in hospitals and other healthcare premises. In part 34 of this series, we looked at the role of compartmentation in limiting the spread of fire from one area to another for at least the minimum period of fire resistance required. It was ascertained that this would allow evacuation from the area of fire origin to a...

    Read more...

  • Facilities Management & Fire Safety - Special Duties in the Fire Procedures - Part 9

    In LWF’s blog series for those people who work in Facilities Management, or who have an interest in or responsibility for Fire Safety, we have been looking at what should be contained within an organisation’s Fire Procedures. In part 8 of the series, the duties of a fire warden were discussed. In part 9, the process of accounting for occupants in case of a fire will be outlined.An effective evacuation is one where each...

    Read more...

  • Fire Engineering Design and Risk Assessment - Water Mist System Components - Part 15

    In LWF’s Fire Engineering blog series for Architects and others involved in building design, we have been looking at methods of fire suppression and most recently, water mist systems. In part 14, the basis for design was discussed and in part 15, those components which go into making a water mist system are outlined. Water mist nozzles are primarily designed to generate the very fine droplets of water necessary and to provide momentum for delivery...

    Read more...

  • Fire Safety for Healthcare Premises - Compartmentation - Part 34

    In LWF’s blog series for healthcare professionals, the aim is to give information on best practice of fire safety in hospitals and other healthcare premises. In part 33 of this series, we looked at the potential for fire spread through the internal structure of the building, particularly the minimum periods of fire resistance provided by elements of the structure. In part 34, the use of compartmentation is discussed.Compartmentation is provided by the fire-resistance of...

    Read more...

Case Studies

The Wohl Neuroscience Institute - Fire Safety, Strategy & Engineering
Key Facts: Client: King’s Clinical Neuroscience Institute Project Manager: MACE Ltd Designers: Devereux Architects/Allies and Morrison Approximate Size: 7,400m2 Description of the Project:...

Read more..

General Bulletins

Fire - The External Risk
When we consider fire safety, our focus is normally from within, what can we do to prevent the occurrence of fire and how we can limit its damage.  Whilst this is the correct stance to take, we m...

Read more..

Technical Bulletins

Evacuation Modelling - Factor in Human Behaviour
Evacuation of buildings can be analyzed in different ways. Approved Document B (ADB) which provides guidance on meeting the requirements of the England and Wales Building Regulations with regard to fi...

Read more..

Site map | Web development London