Lawrence Webster Forrest (LWF), Fire Engineering and Fire Risk Management Consultants
Lawrence Webster Forrest (LWF), Fire Engineering and Fire Risk Management Consultants



Navigation

Client login
Forgotten password
Follow us on Twitter Follow us on Facebook Subscribe to our blog

Lawrence Webster Forrest
Legion House
Lower Road
Kenley
Surrey
CR8 5NH

Tel: +44 (0)20 8668 8663 Fax: +44 (0)20 8668 8583
E-mail: fire@lwf.co.uk

Facilities Management & Fire Safety - Gaseous Systems - Part 24

Posted by LWF: 06/09/2017 16:18

In LWF’s blog series on fire safety for those who work in Facilities Management, we have been looking at the use of gaseous systems as a fixed fire protection system. In Part 23, we established that since halon was phased out in 2003, CO2 systems continued to be used and in recent years, two new categories of gaseous agents were established – halocarbons and inert gases. In Part 24, we’re going to look at the differences between inert gases and halocarbons, as these differences may influence your choice of agent and system.

Inert gas agents cannot be stored as liquefied gases and must be stored at high pressure of around 200 bar and 300 bar. This means that more containers will be required for storage than a halocarbon system.

Halocarbon agents often have long atmospheric lifetimes and so can contribute towards global warming (however they do not damage the ozone layer like halon). Inert gases do not have any impact on global warming as they are comprised of naturally occurring constituent parts.

The overpressures created by the release of inert gases into a room are such that pressure relief vents may need to be installed to combat the effects. However, this can also apply to an enclosed area into which halocarbons are released too.

Halocarbon agents once released are broken down by fire and the resultant hot surfaces. As the decomposition products produced are acidic, they can cause corrosion if not cleared promptly. For this reason, mechanical extraction will be necessary. Although inert gases do not require clearing for the same reason, as there is no acidic residue, the force of the discharge will cause excessive smoke and soot deposits and so mechanical extract is still a likely requirement.

As extinguishment of the fire requires that the gas is held in the affected area, the area must be well sealed to avoid leakage of the agent away from the area of danger. This will avoid re-ignition of the fire as the gas disperses. In the case of inert gas, the leakage would be slower than with halocarbon agents, as the density of the inert gas/air mixture is closer to that of simple air.

Although this was covered in previous blogs, it is worth re-asserting the dangers of exposure to CO2 should such a system be in use. Such systems should only be used in specialist areas which will be empty of occupants and the gas must be thoroughly cleared before it is safe to re-enter. Failure to adhere to such safeguards can lead to fatalities.

Exposure to inert and halocarbon gases is undesirable, but the low levels of toxicity mean that short term exposure would not be seriously debilitating. To avoid exposure, any people in the area where the gas is to be released should be given warning to evacuate the area and in cases where this is likely to be a concern, controls to allow occupants to delay gas release manually should be placed in the area.

In Part 25, we will discuss the design codes affecting gaseous systems as well as exploring the components of an installation. In the meantime, if you have any queries about your own facilities or wish to discuss this blog series, please contact Peter Gyere in the first instance on 0208 668 8663.

Lawrence Webster Forrest is a fire engineering consultancy based in Surrey with over 25 years' experience, which provides a wide range of consultancy services to professionals involved in the design, development and construction and operation of buildings.

Leave a reply

  *

  *

 


CAPTCHA Image

[ Change the image ]


*Required

Subscribe to our fire safety blogs

Bulletins
Email Format
* indicates required

FIRE SAFETY BLOGS

  • Fire Engineering Design and Risk Assessment - Hazard Classifications - Part 13

    In LWF’s current blog series on Fire Engineering Design and Risk Assessment, written for architects and others in the house design and build industry, we have been looking at the use of sprinklers as part of a fire protection plan. In part 12, we discussed those areas of a build where sprinkler use might not be appropriate and how active or passive fire protection alternatives can be used instead. In Part 13, we’ll talk about...

    Read more...

  • Facilities Management & Fire Safety - Gaseous Systems - Part 26

    In LWF’s blog series for those who work in Facilities Management or who have a responsibility for fire safety as a part of their job, we have been looking recently at the use of gaseous systems as a method of fire protection. Gaseous systems are most commonly used in circumstances where sprinkler systems are not appropriate. In part 25 we talked about the use of fusible links which melt to actuate the release control of...

    Read more...

  • Fire Engineering Design and Risk Assessment - Sprinkler Design Codes - Part 12

    In this Fire Engineering Design and Risk Assessment blog series by LWF for Architects and others in the building design business, we have been discussing sprinklers and the design codes affecting installation and use. In Part 11, it was noted that there may be areas of a building in which sprinklers are not advisable but that in these cases, suitable alternative protection must be provided. With that in mind, most design codes lay out the...

    Read more...

  • Facilities Management & Fire Safety - Gaseous Systems - Part 25

    In LWF’s blog series on fire safety for those who work in Facilities Management or who have a responsibility for fire safety in the workplace, we have been looking recently at the use of gaseous systems as a fire protection method. In Part 24, we talked about the different types of gaseous system and how and where they can be used. In Part 25, we’ll discuss the design codes involved before moving on to look...

    Read more...

  • Facilities Management & Fire Safety - Gaseous Systems - Part 24

    In LWF’s blog series on fire safety for those who work in Facilities Management, we have been looking at the use of gaseous systems as a fixed fire protection system. In Part 23, we established that since halon was phased out in 2003, CO2 systems continued to be used and in recent years, two new categories of gaseous agents were established – halocarbons and inert gases. In Part 24, we’re going to look at the...

    Read more...

Case Studies

The Wohl Neuroscience Institute - Fire Safety, Strategy & Engineering
Key Facts: Client: King’s Clinical Neuroscience Institute Project Manager: MACE Ltd Designers: Devereux Architects/Allies and Morrison Approximate Size: 7,400m2 Description of the Project:...

Read more..

General Bulletins

Fire - The External Risk
When we consider fire safety, our focus is normally from within, what can we do to prevent the occurrence of fire and how we can limit its damage.  Whilst this is the correct stance to take, we m...

Read more..

Technical Bulletins

Evacuation Modelling - Factor in Human Behaviour
Evacuation of buildings can be analyzed in different ways. Approved Document B (ADB) which provides guidance on meeting the requirements of the England and Wales Building Regulations with regard to fi...

Read more..

Site map | Web development London