Lawrence Webster Forrest (LWF), Fire Engineering and Fire Risk Management Consultants
Lawrence Webster Forrest (LWF), Fire Engineering and Fire Risk Management Consultants



Navigation

Client login
Forgotten password
Follow us on Twitter Follow us on Facebook Subscribe to our blog

Lawrence Webster Forrest
Legion House
Lower Road
Kenley
Surrey
CR8 5NH

Tel: +44 (0)20 8668 8663 Fax: +44 (0)20 8668 8583
E-mail: fire@lwf.co.uk

Facilities Management & Fire Safety - Gaseous Systems - Part 23

Posted by LWF: 31/08/2017 15:04

In this blog series on fire safety and fire protection methods for people who work in Facilities Management, we are looking at fixed fire-fighting systems and how they are used to protect a building and its occupants in case of fire. 

Although sprinkler systems are very commonly used, they are not the only fixed fire protection system in use in the UK and around the world. In Part 22, we talked about the use of gaseous systems over the years and what gases are in use following the wide-scale banning of halon in 2003.  In Part 23, we’re going to take a look at the clean gaseous agents which have been created since that time, which, unlike halon, don’t have a detrimental effect on the ozone layer.

The new agents which have been developed can be put into two categories –
halocarbons and inert gases. Halocarbon gases are similar in chemical composition to halon, however they are created to cool the flames of the fire rather than interrupting the chemical process of the fire. This means that while it is less harmful to the environment, it is not as efficient as halon 1301, leading to the need to use it in higher concentrations to match effectiveness. 

The agents used in halocarbon gases are hydrofluorocarbons, such as HFC 227ea (CF3CHFCF3, being the most commonly-used), and a fluorinated ketone FK-5-1-12 (CF3CF2C(O)CF(CF3)2, which is known commercially as Novec 1230. Other halocarbons are in use, but are very rarely seen in the UK.

Inert gas systems work entirely differently to halocarbon gas systems. The role of the inert gas is to reduce available the oxygen concentration in the affected area to a point where the fire simply cannot be sustained. 

The modern inert gas systems are safer than CO2 systems in areas where a CO2 system cannot be used due to the dangers for living beings, although they work largely on the same principle. The amount of oxygen left in the applicable area after the use of one of the newer inert gases is capable of sustaining life.

There are four main inert gas agents in use in an inert gaseous system. These are:

IG-541 (52 percent nitrogen, 40 percent argon and 8 percent CO2)
IG-55 (50 percent argon and 50 percent nitrogen)
IG-01 (100 percent argon)
IG-100 (100 percent nitrogen)

The chemical composition is one way in which the inert gases and the halocarbons differ, but there are other factors which will affect the choice of which type of system is most appropriate for a given situation or building.  

In Part 24 of this series, we will look at those influencing factors. In the meantime, if you have any queries about your own facilities or wish to discuss this blog series, please contact Peter Gyere in the first instance on 0208 668 8663.

Lawrence Webster Forrest is a fire engineering consultancy based in Surrey with over 25 years' experience, which provides a wide range of consultancy services to professionals involved in the design, development and construction and operation of buildings.

Leave a reply

  *

  *

 


CAPTCHA Image

[ Change the image ]


*Required

Subscribe to our fire safety blogs

Bulletins
Email Format
* indicates required

FIRE SAFETY BLOGS

  • Fire Engineering Design and Risk Assessment - Foam System Discharge Devices continued - Part 7

    In LWF’s fire engineering blog series for architects and others in the building design industry, we have been discussing methods of fire suppression. In part 6, some of the types of foam system discharge devices were outlined and in part 7, that is continued before moving on to look at Foam system designs.A foam inlet system involves a breeching on the outside of a building being used by the Fire Service to pump foam...

    Read more...

  • Fire Safety for Healthcare Premises - Intensive Care Protection - Part 26

    In LWF’s blog series for healthcare professionals, we look to give information on best practice in fire safety for hospitals and other healthcare premises. In part 25, the use of external escape routes was raised and an outline given of how to give a safe and viable outside route to an external assembly point.  In part 26, LWF looks at the protection of those patients in Intensive Care wards in case of fire.The avoidance...

    Read more...

  • Facilities Management & Fire Safety - Inspection, Testing and Maintenance - Part 4

    In LWF’s blog series for people who work in Facilities Management or those with an interest in or responsibility for fire safety, we have been looking at the inspection, testing and maintenance regimen required in an organisation and how it should be carried out by the responsible person or relevant sub-contractor or in-house qualified personnel. In part 3, the checks that must be carried out on a daily, weekly, monthly and quarterly basis were outlined....

    Read more...

  • Fire Safety for Healthcare Premises - External Escape Routes - Part 25

    In LWF’s blog series for healthcare professionals, the aim is to give information on best practice of fire safety in hospitals and other healthcare premises. In part 24 of this series, the fire safety requirements for final exits was outlined and in part 25, we look at external escape routes.While the escape routes from any point inside a building to the outside are extremely important, it is also important to look at the route...

    Read more...

  • Fire Engineering Design and Risk Assessment - Foam System Discharge Devices - Part 6

    In LWF’s fire engineering blog series for Architects and others in the building design business, we have been looking at methods of fire suppression. In part 5, the different types of foam system were outlined and in part 6, we take a look at what is available in terms of foam system discharge devices.Foam ChambersUsed as a part of cone roof storage tanks, a foam chamber contains a vapour seal, the role of...

    Read more...

Case Studies

The Wohl Neuroscience Institute - Fire Safety, Strategy & Engineering
Key Facts: Client: King’s Clinical Neuroscience Institute Project Manager: MACE Ltd Designers: Devereux Architects/Allies and Morrison Approximate Size: 7,400m2 Description of the Project:...

Read more..

General Bulletins

Fire - The External Risk
When we consider fire safety, our focus is normally from within, what can we do to prevent the occurrence of fire and how we can limit its damage.  Whilst this is the correct stance to take, we m...

Read more..

Technical Bulletins

Evacuation Modelling - Factor in Human Behaviour
Evacuation of buildings can be analyzed in different ways. Approved Document B (ADB) which provides guidance on meeting the requirements of the England and Wales Building Regulations with regard to fi...

Read more..

Site map | Web development London