Lawrence Webster Forrest (LWF), Fire Engineering and Fire Risk Management Consultants
Lawrence Webster Forrest (LWF), Fire Engineering and Fire Risk Management Consultants


Client login
Forgotten password
Follow us on Twitter Follow us on Facebook Subscribe to our blog

Lawrence Webster Forrest
Legion House
Lower Road

Tel: +44 (0)20 8668 8663 Fax: +44 (0)20 8668 8583

Evacuation Modelling - Factor in Human Behaviour

Evacuation of buildings can be analyzed in different ways. Approved Document B (ADB) which provides guidance on meeting the requirements of the England and Wales Building Regulations with regard to fire safety, specifies width of exit routes such that the time required for occupants to flow out of a prescriptively designed enclosure, containing a maximum design population is 150s (2.5 minutes). Sometimes, a more flexible approach, such as that given in BS 9999 is also used for the evacuation assessment in buildings. Techniques offered in these guidance documents are generally straightforward and simple to use and suitable for most buildings.

However, in certain situations e.g. complex or innovative building designs, where the scope of traditional prescriptive design guidance cannot readily be applied it is necessary to consider a performance based design by developing a time based comparison of the time available for occupants to escape (Available Safe Escape Time – ASET) and the escape time (Required Safe Escape Time – RSET) to ensure life safety in the building. In this instance, evacuation models, based on engineering and computational tools, have been used to estimate the time taken to evacuate a building. While hand calculations as recommended in PD7974 remain a possibility to carry out such assessment, it can often be difficult where large numbers are expected or where more complex flow characteristics need to be considered. Also, evacuation models can offer more visual and easily understandable graphical outputs.

LWF have recently undertaken an evacuation modeling exercise for a complex public assembly building in London. From the modeling exercise it is identified that there are some limitations of the model and it does not necessarily reflect the variable nature of human reaction in a fire. This bulletin will discuss the key considerations of human behaviour so that a more comprehensive and predictive model can be developed for a building’s fire evacuation.

Understanding of Fire Precautions and Management Systems in Place

The results of evacuation models could be misinterpreted if the fire precautions and management systems for a complex public building are not fully understood. A fire alarm sounds in a public assembly building and everyone reacts promptly, only using designated stairways and exits, and making their way outside in a brisk but orderly manner. That is how an evacuation model might simulate a fire situation. But it does not consider what is termed “exit choice behaviour” – the different exits that people will choose to leave by, often because they are also the entrances and routes by which they arrive. This is especially true where the occupants are unfamiliar with the layout in public buildings. In a real evacuation scenario this can lead to congestion in the main entrance/exits and queuing inside buildings at those discharge points. As a result effective means of escape can be heavily dependent on robust management of the public by member of staff. All available alternative exits must be used to allow the quickest possible evacuation. If managed evacuation is not possible, the design should be examined and the exit choice ratio for evacuating occupants should be justified. A number of cases should be run to examine the effect of exit choice on evacuation time.

The simulation of the reaction of occupants in large public buildings which adopts a progressive evacuation should also be considered. Although it is possible to integrate fire alarm cause and effect functions into the evacuation models such that only the alarm zone activated will evacuate and people in the adjacent safe zones do not enter the fire area the actual human behavior in a fire situation may not reflect this. The psychology is that a fire alarm in itself is not necessarily regarded as an immediate call to action. This is particularly true where the alarm may have sounded, but no immediate threat is apparent or where occupants may have other activities such as making a purchase. However, even when the alarm is taken seriously, it is also a source of confusion, because the alarm is simply a loud noise. People often act inappropriately but rarely panic or behave irrationally. Such behavior, to a large extent, is due to the fact that information initially available to people regarding the possible existence of a fire and its size and location is often ambiguous or inadequate.

In order to ensure an effective evacuation it is paramount to rely on the trained members of staff to manage the evacuation by motivating and guiding the evacuation of members of the public. In some cases, voice alarm can be used in conjunction with a managed evacuation to ensure the robustness of an evacuation strategy of public buildings. Voice alarm systems are largely becoming a more acceptable mode of informing occupants of a fire occurrence in modern buildings. Large premises which are designed to cater mainly for the general public will benefit greatly from a voice alarm system where voice messages can convey a greater amount of information to the occupants.

Factor in Human Behaviour

Defining human behavior in evacuation models for public buildings is not as simple as just to adjust the occupant travel speeds or change the shape or size of each evacuee. From our experience, the followings are some examples of human behaviors that should be considered when simulating an evacuation model in public buildings.

Final Exit of Evacuation Models

In most evacuation models, evacuation stops at the external exits from buildings, however; for some evacuation scenarios, people may still required to travel for significant distances along external routes before reaching a point from which they can leave the premises. Many of the available escape routes discharge to the external space which can essentially be considered as external corridors and the management of people in these areas must also be considered in the event of a large scale evacuation. Congestion in the external routes should be assessed to determine whether there are extensive queuing times in some locations, particularly where merging flows occur at the external routes and external exits from buildings. In addition, the scenarios such as people stopping at exits due to inclement weather should also be examined as this could reduce the flow of occupants in an evacuation.

People Re-enter the Building to Collect their Belongings

Based on the interview with the senior management team of a complex public assembly building in London, we identified that one problem faced by staff was encountered where people wished to re-enter the building to recover items from the cloakroom in an evacuation. Again this behaviour can cause delay and congestion at exit points and can be difficult to manage for staff. The impact of such behaviour is very difficult to model.

Disabled Evacuation

Evacuation models do not take the behaviour of disabled evacuees into account. An extensive evacuation time may occur in the event of evacuating a large group of people with disabilities in buildings. This is particularly true when there are a group of people with conditions such as dyslexia, dyspraxia or autism visiting a public building such as a museum. These people may not be aware of their impairment. Some of them may present unpredictable behaviour (including violent behaviour), which may impede staff in an emergency. To overcome the limitation of evacuation models regarding disable evacuation, designers should show a level of design redundancy which provides a factor of safety in the models.


The lack of suitable experimental data to validate large evacuation model of public spaces presents a challenge to evacuation modelers. Most evacuation experiments are designed and conducted for practical purposes and not necessarily to support the development of evacuation models. Inevitably, certain assumptions are required to be made based upon the understanding of the fire precautions and management systems in place. Many of the assumptions made are associated with the building’s reliance on a managed evacuation and the rapid response of staff. Therefore it is important to note that where effective evacuation management cannot be achieved this may lead to extended evacuation times beyond those determined by the evacuation models.

Evacuation models can only take us so far in designing safety. Apart from implementing effective evacuation management, evacuation modelers should try to understand human behavior in an emergency situation, particularly the factors that have been discussed in this bulletin to influence the decision-making processes. By understanding those factors and processes, an evacuation modeler can then develop a more comprehensive and predictive evacuation model.

This bulletin was written by Ken Seow MSc

Yours sincerely

Peter J Gyere
Marketing Manager

Lawrence Webster Forrest Limited

LWF are fire engineering and fire risk management consultants with over twenty five years experience in the development of fire engineered technology and the application of fire safety standards including fire engineered techniques.

Tel: 020 8668 8663
Fax: 020 8668 8583

 Copyright Lawrence Webster Forrest Limited

Subscribe to our fire safety blogs

Email Format
* indicates required


  • Fire Engineering Design and Risk Assessment - Firefighting - Part 14

    In LWFs fire safety engineering blog series for Architects and others in the building design business, we have begun to look at firefighting. In part 13, we began to look at how firefighting can be undertaken by the occupiers of a building if a fire starts. The use of portable fire extinguishers was discussed along with relevant training was discussed. In part 14, the provision of hose reels and the standards involved will be covered.


  • Fire Safety for Healthcare Premises - External Fire Spread - Part 48

    In LWF’s blog series for healthcare professionals, the aim is to give information on best practice of fire safety in hospitals and other healthcare premises. In part 47 of this series, LWF took a look at the use of sprinkler protection in healthcare venues and in part 48, we begin to discuss the potential for external fire spread and what precautions should be taken to avoid it.It should be borne in mind that we...


  • Facilities Management & Fire Safety - Fire Safety Engineering & the Prescriptive Approach - Part 5

    In LWFs blog series for those who work in facilities management or who have an interest in or responsibility for fire safety, we have been looking at the term ‘Fire Safety Engineering’ and what it involves. In part 4 of the series, we began to look at the differences between fire prevention and safety based on prescriptive codes and fire safety engineering. In part 5, we will continue from that point by looking at the...


  • Fire Engineering Design and Risk Assessment - Firefighting - Part 13

    In LWF’s fire engineering blog series for architects and others in the building design business, we began discussing firefighting. In part 12, an overview of the term and its meaning before looking at the method of firefighting, namely the strategy, tactics and operations of the Fire Service in the UK and equivalent organisations in other parts of the world. In part 13, we look at firefighting by occupiers of a building.Firefighting undertaken by occupiers...


  • Fire Safety for Healthcare Premises - Sprinklers - Part 47

    In LWF’s blog series for healthcare professionals, the aim is to give information on best practice of fire safety in hospitals and other healthcare premises. In part 46 of this series, we looked at the tank arrangement for sprinkler systems and how each pump should be arranged to draw water from either tank, so that any one tank or pump can be isolated. In part 47, we continue from that point on the subject of...


Case Studies

The Wohl Neuroscience Institute - Fire Safety, Strategy & Engineering
Key Facts: Client: King’s Clinical Neuroscience Institute Project Manager: MACE Ltd Designers: Devereux Architects/Allies and Morrison Approximate Size: 7,400m2 Description of the Project:...

Read more..

General Bulletins

Fire - The External Risk
When we consider fire safety, our focus is normally from within, what can we do to prevent the occurrence of fire and how we can limit its damage.  Whilst this is the correct stance to take, we m...

Read more..

Technical Bulletins

Evacuation Modelling - Factor in Human Behaviour
Evacuation of buildings can be analyzed in different ways. Approved Document B (ADB) which provides guidance on meeting the requirements of the England and Wales Building Regulations with regard to fi...

Read more..

Site map | Web development London